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Abstract—Laminar upward flows with mixed convection in a vertical tube with a uniformly heated zone preceded and followed by
adiabatic zones were investigated numerically. Calculations were performed by solving the elliptic Navier–Stokes and energy equations
for air and a wide range of heating lengths, Reynolds and Richardson numbers. Different combinations of these parameters establish
the existence of five types of flow fields: developing with or without flow reversal, developing followed by a fully developed region
both without flow reversal, and developing with flow reversal followed by a fully developed region with or without flow reversal.
The conditions leading to flow reversal as well as significant upstream diffusion of heat and momentum have been mapped on the
Peclet–Richardson plane for different lengths of the heated zone.  2001 Éditions scientifiques et médicales Elsevier SAS
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Résumé—Convection mixte à l’entrée d’un tube vertical chauffée : étude numérique des différents régimes d’écoulements.
L’écoulement laminaire ascendant dans un tube vertical chauffé uniformément sur une partie de sa longueur a été étudié
numériquement. Les résultats ont été obtenus en solutionnant les équations elliptiques, couplées, non linéaires de Navier–Stokes,
de continuité et de conservation d’énergie pour l’air et plusieurs valeurs de la longueur de chauffage, du nombre de Reynolds
et du nombre de Richardson. Ces paramètres déterminent le régime d’écoulement qui peut être : en développement avec ou
sans renversement, en développement suivi d’une zone hydrodynamiquement et thermiquement développée sans renversement,
ou bien en développement avec renversement suivi d’une zone hydrodynamiquement et thermiquement développée avec ou sans
renversement. Les conditions qui engendrent le renversement et celles qui correspondent à une importante diffusion axiale de
chaleur et/ou de la quantité du mouvement sont identifiées sur le plan Péclet–Richardson pour différentes longueurs de la section de
chauffage.  2001 Éditions scientifiques et médicales Elsevier SAS

convection mixte / modèle elliptique / régimes d’écoulement / diffusion axiale / renversement de l’écoulement / effets de la
longueur de chauffage

Nomenclature

cp specific heat of the fluid . . . . . . . . . J·kg−1·K−1

D internal tube diameter . . . . . . . . . . m
g gravitational acceleration . . . . . . . . m·s−2

Gr Grashof number = ρ2gβq′′D4µ−2k−1

h convection heat transfer coefficient . . . W·m−2·K−1

k thermal conductivity of the fluid . . . . W·m−1·K−1

L1,L3 lengths of adiabatic zones . . . . . . . . m

∗ Correspondance and reprints.
E-mail addresses: nicolas.galanis@gme.usherb.ca (N. Galanis),

nguyenc@umoncton.ca (C.T. Nguyen).
1 Presently with EMCO Ltd., Montréal, QC, Canada.

L2 length of heated zone . . . . . . . . . . . . . . m
Nu Nusselt number = hD/k

p pressure . . . . . . . . . . . . . . . . . . . . . Pa
Pe Péclet number = Pr Re
Pr Prandtl number = cpµ/k

q′′ heat flux . . . . . . . . . . . . . . . . . . . . . W·m−2

r, z dimensionless radial and axial coordinates
R,Z radial and axial coordinates . . . . . . . . . . m
Re Reynolds number = ρV0D/µ

Ri Richardson number = Gr/Re2

T temperature . . . . . . . . . . . . . . . . . . . K
T0 fluid temperature at the tube entrance . . . . . K
V0 average axial velocity . . . . . . . . . . . . . m·s−1

vr , vz radial and axial velocity components . . . . . m·s−1
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Vr,Vz dimensionless velocity components

Greek letters

β thermal expansion coefficient . . . . . . K−1

θ dimensionless temperature
µ dynamic viscosity . . . . . . . . . . . . kg·m−1·s−1

ρ density . . . . . . . . . . . . . . . . . . kg·m−3

ϕ tangential coordinate

1. INTRODUCTION

Mixed convection in ducts occurs when a moving fluid
is heated or cooled. It is encountered in many engineering
applications such as heat exchangers, nuclear reactors,
solar collectors, etc. In order to design such apparatuses
and to predict their off design performance, it is necessary
to obtain an exact description of the velocity, pressure and
temperature distributions under all operating conditions.

To achieve this goal the fluid is practically always con-
sidered to be Newtonian and is modeled using the Boussi-
nesq hypothesis. For steady state laminar flow the hydro-
dynamic and temperature fields are completely described
by the five partial differential equations expressing con-
servation of mass, energy and momentum. These equa-
tions are non-linear, elliptic in all three directions and
coupled because of the buoyancy force created by the
temperature gradient. An analytical solution has been ob-
tained for fully developed conditions [1] but the entire
flow field can only be determined numerically.

The problem has been studied for isothermal ducts
[2], and for uniform [3] or non-uniform [4] heat flux
conditions. In these three studies, and in most of the
other numerical studies of mixed convection in ducts,
the length of the heat transfer zone is assumed to be
infinite. In the few cases where this length has been
assumed to be finite [5, 6] it has been assigned a single
fixed value. Therefore the effects of this parameter on
the hydrodynamic and thermal fields have not been
investigated. A first objective of the present study is to
evaluate these effects.

The boundary conditions at the inlet are almost always
applied at the beginning of the heat transfer zone [2, 4]
although it has been argued [7] that they should be
applied further upstream to account for the possible
effects of upstream diffusion. In the case of isothermal
flows, momentum axial diffusion can be neglected far
from the immediate entrance provided the Reynolds
number is greater than approximately 400 [7]. In the case
of forced convection with simultaneously developing
hydrodynamic and thermal fields it has been shown [8]

that a general criterion for the consideration of the axial
diffusion terms should include both the Reynolds and
Prandtl numbers. Finally, in the case of mixed convection
it has been shown [6] that for air and one particular
heating zone length, the importance of upstream diffusion
of heat and momentum depends on the Reynolds and
Grashof numbers. Unfortunately, the results in [6] are of
limited practical interest since they were calculated for
one very short length of the heating zone (10 diameters).
A second objective of the present study is to generalize
these results.

Boundary conditions at the duct outlet are usually cho-
sen by assuming that the heat transfer zone is infinitely
long and that the corresponding hydrodynamic and ther-
mal fields are fully developed. For the case of an isother-
mal solid-fluid interface this condition is acceptable since
the fluid eventually reaches a uniform temperature and
the effects of buoyancy disappear. On the other hand, for
a uniform heat flux applied at an infinitely long inter-
face, the fully developed condition is questionable since
it has been shown that the flow can become unstable if
it is heated over a very long distance [9, 10]. Many nu-
merical studies of mixed convection avoid this difficulty
by neglecting axial diffusion of heat and momentum as
proposed by Patankar and Spalding [11]. Thus the equa-
tions become parabolic in the axial direction and the need
for boundary conditions at the duct outlet is eliminated.
Furthermore, in this case the numerical solution becomes
easier, since it is possible to use a marching technique
in the axial direction, and the required computer mem-
ory is considerably reduced. However, this approach can
not predict flow reversal which has been observed ex-
perimentally [10] and calculated with the fully elliptic
model [6].

In view of these comments and the stated objectives,
the present study has used the elliptic formulation to de-
termine the hydrodynamic and thermal fields for upward
flow of air in a long circular duct with uniform heat flux
over a finite length. Velocity and temperature profiles
were calculated in the heating zone, as well as in the adi-
abatic zones which precede and follow it, for Reynolds
numbers up to 600, Grashof numbers up to 106 and heat-
ing lengths between 10 and 50 tube diameters. These re-
sults show the effects of Re, Gr and the heating length
on the existence of fully developed flow and flow rever-
sal as well as on the importance of upstream diffusion.
Therefore they can be used to determine whether the axi-
ally parabolic formulation can be used to model the flow.
As noted earlier, the effects of the heating zone length on
these flow characteristics have not been reported up until
now in the literature.
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2. MATHEMATICAL FORMULATION AND
NUMERICAL SCHEME

The system under consideration is shown in figure 1.
The fluid enters a vertical circular duct of internal
diameter D at Z = −L1 with uniform temperature T0.
A uniform heat flux q ′′ is imposed at the solid-fluid
interface from Z = 0 to Z = L2 while the rest of the
interface is adiabatic. The following assumptions are
used:

• The fluid is Newtonian and incompressible; its proper-
ties are constant, except for the density whose variation
is considered only in the buoyancy terms and modeled
using the Boussinesq approximation.

• The flow is laminar, steady, two-dimensional
(∂/∂ϕ = 0) and viscous dissipation is negligible.

• The wall thickness is very small compared to the tube
diameter; thus, the thermal boundary condition on the
lateral surface is applied at the solid-fluid interface:
at R = D/2:

Vz = Vr = 0

∂T /∂R = q ′′/k, for 0 ≤ Z ≤ L2

∂T /∂R = 0, elsewhere

(1)

Figure 1. Schematic representation of system under study.

• The inlet adiabatic zone is used to avoid any interfer-
ence between the corresponding boundary conditions and
an eventually important upstream diffusion of heat and
momentum. Thus
at Z = −L1:

Vr = 0, T = T0, Vz = 2V0
(
1 − 4(r/D)2) (2)

Non dimensional quantities are obtained by using the
diameter D, the average axial velocity V0, ρ(V0)

2 and
q ′′D/k as reference quantities for lengths, velocities,
pressure and temperature difference (T − T0), respec-
tively. Therefore, the thermo-hydrodynamic evolution is
modeled by the following non-dimensional form of the
governing equations:(
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This elliptical formulation necessitates boundary con-
ditions at the exit of the domain. A long adiabatic zone
was therefore added downstream of the heated region to
allow the use of fully developed conditions:

at Z = L2 + L3:

∂Vr/∂Z = ∂Vz/∂Z = ∂T /∂Z = 0 (7)

Equations (3)–(6) indicate that the flow field depends
on the values of three non-dimensional parameters: the
Prandtl, Reynolds and Grashof numbers or, equivalently,
the Prandtl, Péclet and Richardson numbers. This system
of coupled, non-linear, elliptic partial differential equa-
tions is solved using the finite volume method. The equa-
tions are integrated over a control volume and discretized.
By assuming a pressure distribution it is then possible
to calculate the velocity components and the temperature
from the momentum and energy equations. In general,
these velocity components do not satisfy the equation of
continuity. It is therefore necessary to proceed by itera-
tion: the pressure field is corrected using the integrated
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expression of mass conservation and the SIMPLEC algo-
rithm [12] is used to obtain the corrected velocity compo-
nents. Under-relaxation is used during the iterative proce-
dure while the convergence criterion is based on the mass
residual.

The discretization grid is based on a power law for
the radial direction and on a geometric series progression
in the axial direction. They result in a higher density of
grid points in the regions where the gradients of velocity
and temperature are more important. Several different
grids were tested to ensure that the results are grid-
independent [13]. The one finally adopted consists of 20
radial nodes and 400 to 600 axial nodes depending on the
length of the heated zone. Similarly, calculations were
also performed with different values of the convergence
criterion (different mass residuals) to ensure that its value
did not influence the results [13]. The average false
diffusion coefficient has been estimated to be less than
1% of the real diffusion coefficients for both heat and
momentum transfer in all the cases studied.

Figure 2. Validation of the computer code for (a) forced
connection, and (b) mixed convection.

The computer code was validated by comparing its
predictions with analytical, numerical and experimental
results. Figure 2(a) shows a comparison of our calcu-
lated values for the axial evolution of the local Nusselt
number for forced convection with the corresponding an-
alytical solution [14] and the numerical results given by
Kays [15]. The small differences between the analyti-
cal and numerical results close to the tube entrance are
due to the use of only five terms of the infinite series
analytical solution. Figure 2(b) shows a comparison of
our calculated axial velocity profile for mixed convection
with the corresponding experimental results by Zeldin
and Schmidt [16]. The agreement between our results and
those obtained by other methods in these and other cases
[13] shows that the model is satisfactory and the com-
puter code is reliable. They can therefore be used with
confidence for the study of the problem under considera-
tion.

3. RESULTS AND DISCUSSION

3.1. Field description for a
representative case (Pr = 0.7,
Re = 500, Ri = 4)

Previous results [6, 10] have shown that for ascending
heated flow the acceleration due to buoyancy can result in
an axial velocity profile which exhibits a maximum value
elsewhere than at the tube axis (r = 0). Furthermore,
the velocity at, and near, the tube axis may become
negative. These studies have also shown that the onset
of this flow reversal depends on the values of the Prandtl,
Péclet and Richardson numbers. Figure 3, which shows
the evolution of the axial velocity at r = 0 for four
different heating lengths L2, indicates that the onset
of flow reversal also depends on the value of this last
parameter. Indeed, the minimum velocity for L2 = 10
is positive (no flow reversal) while it is negative (flow
reversal is present) for the three longer heating zones.
Based on the references reviewed in this and our previous
articles on mixed convection [4, 6, 17] this effect of the
heating length has never been reported before.

Figure 3 also shows that for all four cases the axial
velocity at r = 0 decreases rapidly in the heating zone.
For L2 = 10 it reaches its minimum value just beyond
the end of the heating zone. For the three longer heating
zones the minimum is identical and it occurs at the same
axial position (z = 14). Beyond the minimum, the axial
velocity for the two shorter heating zones (L2 = 10 and
L2 = 15) increases monotonically towards 2.0 since heat
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Figure 3. Evolution of the axial velocity at z = 0.

is not supplied any longer and the velocity profile in
the outlet adiabatic zone tends towards the parabolic
Poiseuille radial distribution. On the other hand, for
z > 14, the velocities for the two longer heating zones
(L2 = 30 and L2 = 50) increase slightly and attain
a constant negative value from z ≈ 21 to the end of the
heating zone. The asymptotic tendency beyond this point
is identical to the one for the two shorter heating zones.

The fact that the centerline axial velocity for the two
longer heating zones remains constant over a certain dis-
tance suggests the existence of a hydrodynamically fully
developed region. Figure 4 substantiates this suggestion
since the velocity profiles at z = 30 and z = 50 are ex-
actly the same for L2 = 50. In fact, this velocity pro-
file applies everywhere beyond z ≈ 21 to the end of the
heated zone for both L2 = 50 and L2 = 30. Figure 4 also
shows that, for the present combination of flow parame-
ters, the velocity profiles from z = 0 to the end of the
heating zone are identical for all values of L2. Thus, for
example, the velocity profiles for L2 = 18 would be the
same as those for L2 ≥ 18 for any axial position between
z = 0 and z = 18.

The results of figure 4 also show that the velocity pro-
file at the entrance of the heating zone (z = 0) is par-
abolic, i.e., identical to the one imposed at z = −L1.
Therefore, for the flow parameters under consideration,
upstream diffusion of momentum towards the inlet adi-
abatic zone is negligible. Further downstream, the axial
velocity profile becomes flatter and, eventually, the max-
imum velocity occurs fairly close to the fluid-solid inter-
face due to the buoyancy induced acceleration.

The corresponding temperature profiles are shown in
figure 5. It should be noted that, for the combination
of flow parameters under consideration, the temperature
profile at the entrance of the heating zone (z = 0) is

Figure 4. Evolution of axial velocity profile.

Figure 5. Evolution of temperature profile.

identical to the inlet condition imposed at z = −L1. Thus,
in this case, upstream heat diffusion towards the inlet
adiabatic zone is negligible. Similarly to the velocity
profiles, we note that the temperature profiles up to the
end of the heating zone are identical for all values of L2.
Thus, for example, the temperature profiles for L2 = 18
would be the same as those for L2 > 18 for any axial
position between z = 0 and z = 18. Figure 6 which shows
the axial evolution of the difference between the fluid
bulk temperature and the wall temperature establishes
the existence of a thermally developed field beyond
z ≈ 21 for the two longer heating zones (L2 = 30 and
L2 = 50). Indeed, beyond this position that temperature
difference remains constant. It should also be noted that
it has the same value for both L2 = 30 and L2 = 50 in
accordance with the corresponding observation regarding
the temperature profiles in figure 5.

Figures 7 and 8 show the evolutions of the resistance
coefficient and the local Nusselt number respectively.
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Figure 6. Difference between fluid bulk and wall temperatures.

Figure 7. Evolution of the resistance coefficient.

Very close to the beginning of the heated zone these two
variables are essentially identical to the corresponding
values for forced convection since the buoyancy induced
acceleration has not yet manifested itself. Further down-
stream however, their values are greater than the corre-
sponding ones for forced convection which are, for fully
developed conditions, (f Re)∞ = 16 and Nu∞ = 4.36.
The results of these figures confirm two previous con-
clusions:

(a) the existence of a fully developed region for 21 <

z < L2 in the case of the two longer heating zones, and
(b) the fact that, for the flow parameters under consid-

eration, the hydrodynamic and thermal variables at any
cross section up to the end of the heating zone are identi-
cal for all values of L2.

Finally, figure 9 shows the streamlines for each of
these four cases (it should be noted that in this figure ra-
dial dimensions are 29 times greater than axial dimen-
sions). This representation of the flow field clearly shows
the regions of developing (axially dependent) and hydro-

Figure 8. Evolution of local Nusselt number.

Figure 9. Streamlines for different values of L2 (Pr = 0.7,
Re = 500, R = 4).

dynamically developed (axially independent) flow: in the
former the streamlines are curved while in the latter they
are parallel to the tube axis. The shape of the recircula-
tion bubble, associated with the region of negative axial
velocity at r = 0, is clearly visible for the three longer
heating zones. For L2 = 15 the cross section of the re-
circulation bubble is very nearly elliptical. On the other
hand, for the longer heating zones the radial dimension of
the recirculation bubble grows from zero to a maximum
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value, decreases slightly and remains constant until the
end of the heating zone. It is therefore possible to iden-
tify three different flow regimes in the heating zones for
the flow conditions under consideration.

(a) A developing flow without flow reversal (for
L2 = 10).

(b) A developing flow with flow reversal (for L2 = 15).
(c) A hydrodynamically developing flow with flow

reversal followed by a developed flow with flow reversal
(for L2 = 30 and L2 = 50). According to the previous
observations regarding figures 5, 6 and 8 the flow field is
also thermally developed in this part of the heating zone.

3.2. Effects of the Reynolds and
Richardson numbers

Contrary to the results of figures 4 and 5, those in
figures 10 and 11 show that the effects of upstream
diffusion are significant when the Reynolds number
decreases and/or when the Richardson number increases.
Indeed, these results show that at z = 0 the fluid near
the fluid-solid interface is considerably warmer than at
z = −L1, and that the corresponding axial velocity
profile is significantly distorted because of the resulting
buoyancy force. In such cases the application of the inlet
boundary conditions at the beginning of the heated zone
(z = 0) is obviously not acceptable since it would result
in a distortion of the flow field.

Figure 12 shows the effect of the Richardson number
on the streamlines. When these patterns for L2 = 50
are compared with the corresponding one in figure 9,
we note that as Ri decreases from 4 to 3.4 the size
of the recirculation bubble decreases as well. When Ri
decreases even further (Ri = 1) there is no recirculation
at all (flow reversal does not occur for this combination

Figure 10. Effect of Re on axial velocity and temperature
profiles.

of flow variables). The evolution of the velocity and
temperature profiles for these two cases (not reproduced
here for the sake of brevity) shows similarities and
differences from those presented in figures 3–8. Thus:

Figure 11. Effect of Ri on axial velocity and temperature
profiles.

Figure 12. Streamlines for different values of Ri (Pr = 0.7,
Re = 500, L2 = 50).
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– For Ri = 3.4 the axial velocity at z = 0 decreases
rapidly in the heating zone and reaches a negative
minimum at z ≈ 15. It then increases slightly to a positive
value which remains constant for 23 < z < 50. This
last result indicates that the flow is hydrodynamically
developed in the downstream region of the heating
zone, a fact confirmed by the axial velocity profiles
which are identical throughout this region. Since the
temperature is found to increase linearly in this region,
the corresponding flow field is fully developed. The
fundamental difference from the results presented in
figures 3–8 is that in the present case this fully developed
flow is not concurrent with flow reversal. Therefore this
flow regime is different from the three identified at the
end of the previous section.

– For Ri = 1 the axial velocity at z = 0 decreases rather
slowly in the heating zone and reaches a positive min-
imum at z ≈ 30 (no flow reversal). It then remains con-
stant until the end of the heated zone. Once again this sug-
gests that the flow is hydrodynamically developed, a fact
which is confirmed by the axial velocity profiles which
are invariable in this region. Since the temperature in this
region increases linearly with z, the flow field is also ther-
mally developed. This flow field, which consists of a de-
veloping and fully developed region, both without flow
reversal, is different from all four previously described.

3.3. Synthesis and decision charts

The previous results have established that certain
combinations of Pr, Pe, Ri and L2 can result in flow
reversal. Figure 13 presents the critical combinations of
these variables for Pr = 0.7. In general, for given values
of Pr, Pe and L2 the critical value of Ri depends on both
Pe and L2. However, for any given value of Pe there
exists a characteristic length Lu such that for L2 > Lu

the critical value of Ri depends only on Pe; as shown
in the figure this characteristic length increases linearly
with Pe. Furthermore, for any given value of L2 there
exists an asymptotic value Ri∞ such that for Ri < Ri∞,
flow reversal does not occur for any values of Pe. It
is obvious that the elliptic model must be used for any
combination of flow parameters for which flow reversal
occurs. It should even be used when flow reversal does
not occur but the combination of flow parameters is close
to the critical conditions. The axially parabolic model can
be used only if the combination of flow parameters is well
removed from the critical conditions.

Figures 10 and 11 have shown that when the Reynolds
number is small and the Richardson number is large, up-

Figure 13. Flow reversal chart for Pr = 0.7.

Figure 14. Effects of upstream diffusion for Pr = 0.7.

stream diffusion of heat and momentum results in signif-
icant changes of the velocity and temperature profiles be-
tween z = −L1 and z = 0. When this happens, the inlet
boundary conditions cannot be applied at the beginning
of the heating region. In order to quantify these changes
we have expressed the difference between correspond-
ing values of VZ(r) and θ(r) at z = −L1 and z = 0 as
a percentage of the former. Figure 14 shows the com-
binations of flow conditions which result in significant
(> 2%) or small (< 2%) changes in these two profiles for
Pr = 0.7. We note that, for a given Péclet number, sig-
nificant changes in the velocity profile occur for smaller
values of the Richardson number than those leading to
significant changes in the temperature profile. The inlet
boundary conditions (parabolic velocity profile, uniform
temperature profile) can be applied at the beginning of the
heating region only when the Richardson number is quite
small (Ri < 2 for Pe = 20 and Ri < 0.6 for Pe = 70).
For higher Péclet numbers an upstream adiabatic region
should always be included in the calculation domain.
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4. CONCLUSION

The results presented in this paper show that the
flow field for laminar developing mixed convection with
aiding buoyancy in vertical tubes is influenced by the
ratio of the heating zone length to tube diameter and by
the flow parameters (the Prandlt, Reynolds and Grashof
numbers). In particular, the values of these four non-
dimensional parameters determine whether flow reversal
occurs, whether the flow is developing or fully developed
and whether upstream diffusion of heat and momentum
are significant. Therefore they should all be taken into
consideration when deciding on the use of an axially
parabolic or fully elliptic model and on the application
of the inlet boundary conditions at the beginning of the
heated zone. The effects of the heating zone length have
not been reported before.
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